

UNIVERSITÀ DEGLI STUDI DI CAGLIARI - D.I.C.A.A.R.

Cognome Nome Matricola

Esame di Fisica tecnica ambientale

Parte B

Psicrometria - Condizionamento invernale

Si vogliono miscelare due portate d'aria m_1 =4Volumi/h e m_2 =2Volumi/h rispettivamente nelle seguenti condizioni T_1 =2°C ϕ_1 =80% T_2 =12°C ϕ_2 =70%. Ottenendo così una portata d'aria miscelata m_m nelle condizioni T_m =?°C X_m =?. Con la portata d'aria m_m nelle condizioni T_m e X_m . su calcolate si deve riscaldare un locale avente un volume pari a 1000 m^3 , nel quale è presente un carico interno pari a q_d =3000W. Internamente sono richieste rispettivamente le seguenti condizioni di temperatura e umidità relativa T_a =20°C ϕ_a =60%. Il riscaldamento sarà effettuato con un impianto a tutt'aria il quale sarà dotato di una batteria di riscaldamento e umidificazione. Si richiede allo studente, supponendo che la massa volumica sia costante e pari a ρ , di tracciare le trasformazioni sul diagramma psicrometrico e calcolare numericamente:

- 1. Le portata d'aria di miscelata $\mathbf{m}_{\mathbf{m}}$, la sua temperatura $\mathbf{T}_{\mathbf{m}}$ e la sua umidità specifica $\mathbf{X}_{\mathbf{m}}$;
- 2. La differenza di umidità specifica Δx che è necessario somministrare alla miscela, ottenuta nel punto uno, per ottenere le condizioni richieste;
- 3. La potenza della batteria di riscaldamento P_{risc} ;
- 4. La temperatura d'immissione dell'aria che consente di bilanciare il carico interno q_d presente nel locale.

Dati:

 $Volume\ locale = 1000m^3$

 $T_a=20^{\circ}C$

 $\varphi_a = 60\%$

 $T_1 = 2^{\circ}C \varphi_1 = 80\%$

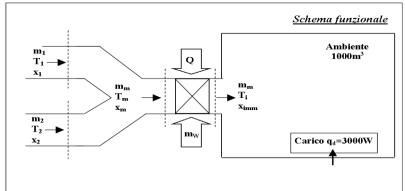
 $T_2 = 12^{\circ}C \varphi_2 = 70\%$

 $m_{1=4}$ Volumi/h

 $m_2=2$ *Volumi/h*

Incognite:

Portata di miscela $m_m=?$


Temperatura della miscela $T_m = ?^{\bullet}C$

Umidità specifica miscela $x_m=?$

Temperatura d'immissione $T_i=?^{\bullet}C$;

Umidità specifica d'immissione x_{imm} =?

Differenza di umidità specifica che è necessario immettere nella miscela Δx =? Potenza della batteria di riscaldamento P_{risc} =?

Acustica / illuminotecnica

- 5. Spiegare la differenza fra Potere fonoisolante R, Potere fonoisolante apparente R', Isolamento acustico, ed indice del potere fonoisolante Rw
- 6. Spiegare in cosa consiste e quali sono i parametri in ingresso per calcolare l'illuminamento medio con il metodo del flusso totale

Modalità di svolgimento della prova

È consentito durante la prova l'esclusivo uso di:

- Fogli timbrati;
- Diagramma psicrometrico;

Non è consentito inoltre durante la prova consultare testi; Ricordarsi di firmare i compiti consegnati;

Zona riservata al corpo docente

Valutazione

Commenti

UNIVERSITÀ DEGLI STUDI DI CAGLIARI - D.I.C.A.A.R.

Nome Matricola Cognome

Esame di Fisica tecnica ambientale

Parte A

Trasmissione del calore

Si deve progettare lo spessore dell'isolante di un sistema costruttivo per pareti portanti come quello in figura; si vuole ottenere un valor della trasmittanza pari a U. Si richiede allo studente, di spiegare il significato dei parametri utilizzati di tracciare qualitativamente e calcolare numericamente:

- 1. Lo spessore dell'isolante S₃ necessario.
- 2. L'andamento qualitativo delle temperature all'interno del pacchetto;
- 3. Spiegare cosa sono e da cosa dipendono i fattori di adduzione alfa (resistenze superficiali α);
- 4. La potenza totale dispersa, considerando le superfici interne, dal sistema costruttivo progettato se questo costituisse l'involucro del volume schematizzato nel disegno;

Dati

 $Ti=20^{\circ}C$

 $S_1 = S_2 = 2cm$

 $S_2=25cm$

 $C_2 = 1.2W/m^2K$

 $U = 0.30W/m^2K$

 $\lambda_1 = \lambda_4 = 0.12 W/mK$

 $\lambda_3 = 0.035 W/mK$

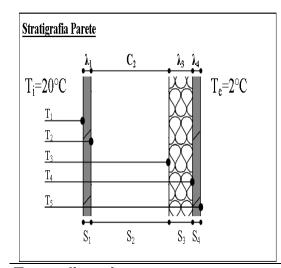
 $\alpha i = 7.5 W/m^2 K$

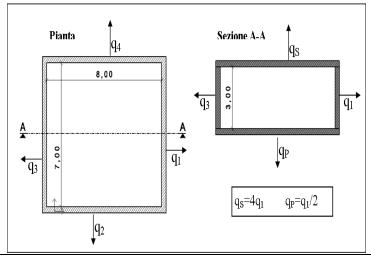
 $\alpha e = 25W/m^2K$

 $q_s = 4q_1$

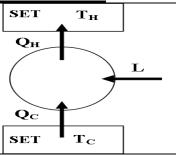
 $q_{p}=q_{1}/2$

Incognite


Spessore isolante $S_3=?$


Temperatura $T_1=?$

Temperatura $T_4=?$


Cosa sono i coefficienti liminari $\alpha=?$

Potenza totale dispersa dall'involucro per trasmissione q_{tot} =?

Termodin<u>amica</u>

Verificare per le due machine termiche a ciclo inverso che operano fra le temperature Th=35°C e Tc=5°C se le stesse sono realizzabili o non realizzabili conoscendo i seguenti dati

Macchina 1 : Qh=20 kJ lavoro fornito L=0.5kWh

Macchina 2 : Qc=10000 J lavoro fornito L=0.5kWh

Modalità di svolgimento della prova

È consentito durante la prova l'esclusivo uso di:

- Fogli timbrati;
- Diagramma psicrometrico:

Non è consentito inoltre durante la prova consultare testi; Ricordarsi di firmare i compiti consegnati;

Zona riservata al corpo docente

Valutazione

Commenti