UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Sezione Energetica e Fisica Tecnica

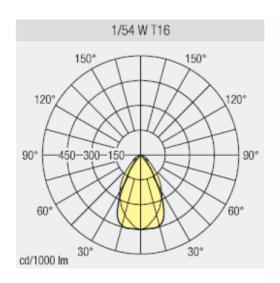
Fisica Tecnica PARTE B: 10 Settembre 2012

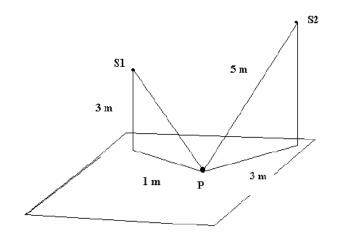
1) Calcolare la temperatura di miscela, la temperatura di rugiada, la temperatura di B.U. e di B.S, l'entalpia e l'umidità specifica del punto M di miscela di due portate di aria che si trovano nelle seguenti condizioni:

Condizione A:

Portata volumetrica = $2000 \text{ m}^3/\text{h}$, temperatura di B.S = 30 °C, temperatura di B.U. = 28,5 °C

Condizione B:


Portata Massica = 3600 kg/htemperatura di B.S = $22 \,^{\circ}\text{C}$, umidità specifica = $10 \, \text{g}_{\text{ y}}/\text{kg}_{\text{ a.s.}}$


2) Una volta individuato il punto di miscela, calcolare la potenza della batteria di raffreddamento necessaria per far condensare 5 $g_v/kg_{a.s}$

Determinare la temperatura di B.S e di B. U. dell'aria all'uscita dalla batteria.

Disegnare le trasformazioni sul diagramma psicrometrico

3) Si calcoli il valore dell'illuminamento orizzontale nel punto P utilizzando la curva fotometrica sotto riportata con l'ipotesi di usare una sorgente di 2000 lumen.

Nome	Cognome	N° matr

Nome	Cognome	N° matr
 	E	