UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Dipartimento di Ingegneria del Territorio Sezione Energetica e Fisica Tecnica

Fisica Tecnica PARTE B: 15 MARZO 2012

1) Calcolare la temperatura di miscela, la temperatura di rugiada, la temperatura di B.U. e di B.S, l'entalpia e l'umidità specifica del punto M di miscela di due portate di aria che si trovano nelle seguenti condizioni:

Condizione A: $Q = 2000 \text{ m}^3/\text{h},$

temperatura di B.S = 35 °C,

temperatura di B.U. = 28 °C

Condizione B: m = 3600 kg/h

temperatura di B.S = 25 °C,

umidità specifica = 10 g _v/kg _{a.s}.

Una volta individuato il punto di miscela, calcolare la potenza della batteria di raffreddamento necessaria per far condensare 5 $g_v/kg_{a.s}$

Determinare la temperatura di B.S e di B. U. dell'aria all'uscita dalla batteria

- 2) Definizione operativa del fattore di visibilità monocromatica e del coefficiente di visibilità: correlazione tra flusso luminoso e il flusso energetico
- 3) Spiegare la necessità di introdurre i livelli di grandezze acustiche e definire i livelli di pressione sonora, intensità acustica, densità sonora, potenza acustica e i vari valori di riferimento.

Nome	Cognome	N° matr
	8	- ,