Nome	Cognome	Corso	.matr
	009:10:110:11:11:11:11:11:11:11:11	00.00	

4)

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Dipartimento di Ingegneria del Territorio Sezione Energetica e Fisica Tecnica

CORSO DI FISICA TECNICA (Esame 24 Novembre 2011)

Parte B

1)	Dal mescolamento adiabatico di una portata di aria nelle condizioni A: $ Q_A = 1500 \text{ m}^3 \text{/h}; \qquad t_A = 8 \text{ °C}; \qquad U.RA = 40\% $ con una portata volumetrica Q_B di aria nelle condizioni B: $ Q_B = ??? \text{ m}^3 \text{/h} \qquad t_B = 30 \text{ °C}; \qquad U.RB = 40\% $
	si desidera ottenere una portata volumetrica totale Q_T con t_T = 22 °C. Si calcolino: a) la portata volumetrica incognita Q_B . b) titolo e Umidità Relativa della portata volumetrica totale Q_T risultante c) portata massica totale M_T Disegnare, inoltre, le trasformazioni termoigrometriche sul diagramma di Mollier
2)	Una corrente di 0,1 kg/s d'aria umida esterna entra in un condizionatore nelle condizioni di t = 15 °C e U.R. = 30 %. Nel condizionatore avviene prima un riscaldamento sensibile e successivamente una umidificazione isoentalpica. Le condizioni dell'aria ll'uscita del condizionatore sono t = 24 °C e U.R. = 50 %. Il riscaldamento avviene mediante una resistenza elettrica, mentre l'umidificazione avviene con acqua in fase liquida nebulizzata all'interno della corrente d'aria (trasformazione isoentalpica). Determinare la potenza termica necessaria per il riscaldamento e la portata massica di acqua necessaria per l'umidificazione. Disegnare, inoltre, le trasformazioni termoigrometriche sul diagramma di Mollier
3)	Spiegare la necessità di introdurre i livelli di grandezze acustiche e definire i livelli di pressione

sonora, intensità acustica, densità sonora, potenza acustica e i vari valori di riferimento.

operativa del fattore di visibilità spettrale e al flusso luminoso.

Attraverso la descrizione delle curve di visibilità fotopica e scotopica, giungere alla definizione