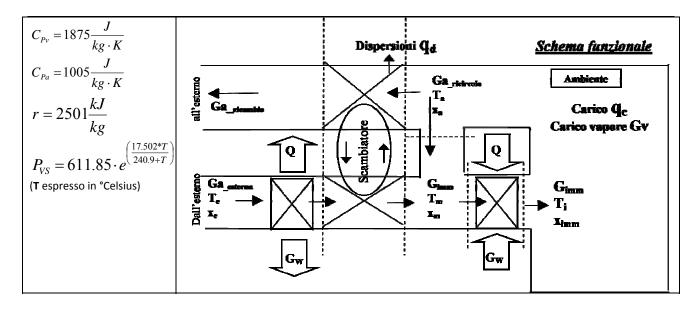
UNIVERSITA' DEGLI STUDI DI CAGLIARI

CORSO DI FISICA TECNICA Corsi: ING EDILE, EDILE-ARCHITETTURA, EDILIZIA, T.C.R.B.C. E ARCHITETTURA DELLE COSTRUZIONI

Prova scritta d'esame appello del 14/07/2010

Nome	Cognome	Matricola
Annuale	Prima Parte	Seconda parte


Climatizzazione Estiva

Si vuole climatizzare un ambiente di volume pari a V nel quale sono presenti carichi e dispersioni. Internamente sono richieste rispettivamente le seguenti condizioni di temperatura e umidità relativa T_a ϕ_a ed inoltre necessario un ricambio d'aria pari a Gae. Si consideri inoltre una portata di ricircolo dell'aria interna pari a Gar, da calcolare in modo che sia garantito il confort, il massimo risparmio energetico e considerando la presenza di uno scambiatore di calore. Esternamente le condizioni dell'aria sono T_e ϕ_e . Supponendo che la massa volumica sia costante e pari a ρ , considerando che la batteria di raffreddamento ha un fattore di by-pas, tracciare le trasformazioni sul diagramma psicrometrico e calcolare numericamente:

- La differenza di umidità specifica Δx che è necessario sottrarre o somministrare alla **Gae**, per ottenere le condizioni richieste considerando carichi e dispersioni simultanei;
- Le condizioni d'immissione della miscela T_i e x_{imm} considerando che T_i deve avere un $\Delta T_{max}=3$ rispetto a T_a
- Il calore scambiato dall'aria in uscita (Gar) con l'aria in ingresso (Gae) nello scambiatore;
- La potenza della batteria per il raffreddamento e la deumidificazione P_{raf} e il post-riscaldamento P_{risc} considerando il contributo dato dallo scambiatore di calore.
- Ipotizzando che la località di installazione dell'impianto ha 2500 GG (gradi giorno) e che l'impianto sarà in funzione 24hr/giorno per 140gg, utilizzando come potenza totale impiegata $P_{raf} + P_{risc}$ calcolare l'energia fornita dall'impianto nel periodo di funzionamento.

Volume locale = $1000m^3$ T_a = $24^{\circ}C$ φ_a =65% T_e = $35^{\circ}C$ φ_e =90%Ricambio minimo=10Volumi/h dispersioni q_d = $10*10^3W$ carichi q_c = $40W/m^3$ G_v = $0,003kg/m^3hr$ G_{ar} =?

$$P_{\text{atm}} = 101325 Pa \qquad \eta_{\text{scambiatoree}} = 0.9 \qquad \text{by-pas} = 0.3 \qquad \rho = 1.17 \frac{kg}{m^3} \quad x = 0.623 \cdot \left(\frac{\varphi \cdot P_{\text{VS}}}{P_{\text{ATM}} - \varphi \cdot P_{\text{VS}}} \right)$$

E'consentito durante la prova l'esclusivo uso di:	Zona riservata al corpo docente
 Fogli a quadretti; 	Valutazione
 Diagramma psicrometrico; 	
Non è consentito inoltre durante la prova consultare testi	
•	
,	

UNIVERSITA' DEGLI STUDI DI CAGLIARI

CORSO DI FISICA TECNICA Corsi: ING EDILE, EDILE-ARCHITETTURA, EDILIZIA, T.C.R.B.C. E ARCHITETTURA DELLE COSTRUZIONI

Prova scritta d'esame appello del 14/07/2010

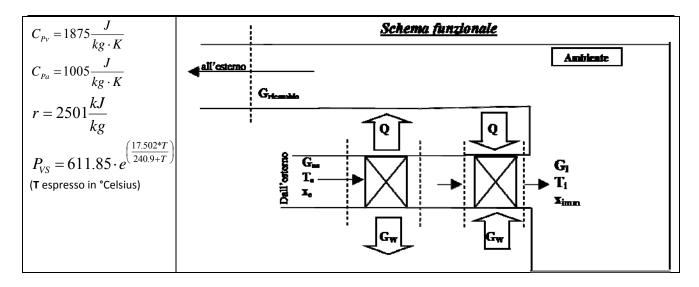
Nome	Cognome	Matricola
Annuale	Prima Parte	Seconda parte

Climatizzazione Estiva (solo architetti)

Si vuole climatizzare un ambiente di volume pari a V. Sono richieste rispettivamente le seguenti condizioni di temperatura e umidità relativa $T_a \ \phi_a$ ed inoltre necessario un ricambio d'aria pari a Gae. Esternamente le condizioni dell'aria sono T_e ϕ_e . Supponendo che la massa volumica sia costante e pari a p, tracciare le trasformazioni sul diagramma psicrometrico e calcolare numericamente:

- La differenza di umidità specifica Δx che è necessario sottrarre o somministrare alla Gae, per ottenere le condizioni richieste considerando carichi e dispersioni simultanei;
- Le condizioni d'immissione della miscela T_i e x_{imm}
- La quantità di calore sensibile sottratta all'aria;
- La quantità di calore latente sotratta all'aria;

 $Volume\ locale = 1000m^3$


 $T_a=24^{\circ}C$

 $\varphi_a = 65\%$

 $T_e=35^{\circ}C$

Ricambio minimo=3Volumi/h

$$P_{\text{atm}} = 101325Pa$$
 $\rho = 1.17 \frac{kg}{m^3} \quad x = 0.623 \cdot \left(\frac{\varphi \cdot P_{VS}}{P_{ATM} - \varphi \cdot P_{VS}} \right)$

E'consentito durante la prova l'esclusivo uso di:	Zona riservata al corpo docente
Fogli a quadretti;	Valutazione
 Diagramma psicrometrico; 	
Non è consentito inoltre durante la prova consultare testi	